Realizing Degree Sequences with Graphs Having Nowhere-Zero 3-Flows

نویسندگان

  • Rong Luo
  • Rui Xu
  • Wenan Zang
  • Cun-Quan Zhang
چکیده

The following open problem was proposed by Archdeacon: Characterize all graphical sequences π such that some realization of π admits a nowhere-zero 3-flow. This open problem is solved in this paper with the following complete characterization: A graphical sequence π = (d1, d2, . . . , dn) with minimum degree at least two has a realization that admits a nowhere-zero 3-flow if and only if π 6= (3, 2), (k, 3), (k, 3k−1), where k is an odd integer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden graphs and group connectivity

Many researchers have devoted themselves to the study of nowhere-zero flows and group connectivity. Recently, Thomassen confirmed the weak 3-flow conjecture, which was further improved by Lovász, Thomassen, Wu and Zhang who proved that every 6-edge-connected graph is Z3-connected. However, Conjectures 1 and 2 are still open. Conjecture 2 implies Conjecture 1 by a result of Kochol that reduces C...

متن کامل

Nowhere-Zero Flows in Random Graphs

A nowhere-zero 3-flow in a graph G is an assignment of a direction and a value of 1 or 2 to each edge of G such that, for each vertex v in G, the sum of the values of the edges with tail v equals the sum of the values of the edges with head v. Motivated by results about the region coloring of planar graphs, Tutte conjectured in 1966 that every 4-edge-connected graph has a nowhere-zero 3-flow. T...

متن کامل

Nowhere-Zero 3-Flows in Squares of Graphs

It was conjectured by Tutte that every 4-edge-connected graph admits a nowherezero 3-flow. In this paper, we give a complete characterization of graphs whose squares admit nowhere-zero 3-flows and thus confirm Tutte’s 3-flow conjecture for the family of squares of graphs.

متن کامل

Cubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows

We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...

متن کامل

Nowhere-zero 3-flows in abelian Cayley graphs

We characterize Cayley graphs of abelian groupswhich admit a nowhere-zero 3-flow. In particular, we prove that every k-valent Cayley graph of an abelian group, where k 4, admits a nowhere-zero

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2008